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Abstract. A ‘Maxwell’ theory tnat accommodates a possible attraction-repulsion-asym- 
metry (ARA) is seen to emerge from a suitably chosen variational principle. For ‘neutral’ 
bodies the theory is seen to reduce to a vector-gravitational type field with its coupling 
constant (GARA)  related to the asymmetryparameter of the theory. T h i  implications of the 
emerging analysis to some aspects in astronomy and to physics in general are discussed. It is 
seen that such an asymmetry could lead to: 

(1) Changes in perihelian advance of gravitational orbits by an amount - 4 G A R A / G  

times the general relativistic value. 
(2) The associated waves carrying positive energy in opposition to the negative energy 

carried by waves in ordinary vector gravitational field theories. 
(3) Interesting properties of the charges related to associated field theories. 

As an ex post facto exposition of our analysis, we consider the following manifestly 
covariant form of an action: 

where the coordinates z &  describe a test particle of mass m and charge q‘”’. F$ is 
equal to A@!$) -A,$); (a), when occurring by itself, will take the values +1 or -1, and 
as a superscript it will by convention be used to label the two classes of charges as 
described below. The matrix g(p) (p)  is defined as having components (i I?), its inverse 
being 1/(1- k2) of itself; k is a constant. 

The associated Lagrangian describes (as shall soon be elaborated) two massless 
vector fields in interaction with charges that are separable into two classes-con- 
ventionally defined as positive- and negative-charged classes. The matrix g(,)‘@’ with 
k # 1 introduces the essential deviation from the Maxwell Lagrangian and has been 
constructed so that the mechanical effects of the field on a test particle of either class 
cannot be ascribed to the notion of a unique electromagnetic field independent (as in 
the Maxwell theory) of the class to which the test particle belongs. 

To see this in detail, we obtain the field equations by varying the action with respect 
to A(”)* to give 

(2) (1) (0) a@F;:) = 4 ~  1 g(p) J, , 
( 0 )  
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where 

represents the current-density four-vectors arising from the contribution from the ( p )  
class of charges. The effect of the field on a test particle that may in general consist of 
contributions (q+, q-) from both classes is obtained by varying ~ " ( 7 )  in the actions, 
giving 

The dots denote differentiation with respect to the parameter r. 
The action (1) (and therefore equations (2) and (3)) is seen to be invariant under 

A(")& + A(")& - 8'A'"'-a freedom that may be used to define a 'Lorentz gauge' in our 
theory to yield 

An investigation of the static solutions of this equation coupled with equation (3) vivify 
the basic features of the theory, namely: 

(1) The particles of each class (separately) interact with particles of their own class 
by laws legislated by the Maxwell theory; 

(2) The crossed interaction of two particles belonging to different classes is 
represented by a force that is opposite in direction, but not equal in magnitude to the 
force between similar particles in the same class. This leads to the attraction-repulsion- 
asymmetry that is responsible for the title of this paper. 

It seems to be quite natural to expect such an asymmetry in nature. Reflecting upon 
the (200 year old) notion of 'definition' of unit charges, we recall that they are defined as 
charges that repel similar charges by a unit force when a certain distance apart. To 
require further that unit charges of different classes so defined should attract each other 
by a force that may be equal in magnitude to that arising out of repulsion of unit charges 
in the same class is clearly out of the realm of a 'definition' of such charges, and is prone 
only to experimental investigation. We shall soon look into the difficulties one may 
encounter in a typical experiment required to test such an asymmetry. The assumption 
of an equality of attraction and repulsion is what leads to a simplification in the Maxwell 
theory rendering both classes of charges describable in a 'unified' way by defining one 
class to constitute 'negative' charges and the other as 'positive'. The cumulative effect 
of a concentrated assembly of such charges is then the same as that of a charge equal to 
that of their algebraic sum. This facility is not available in our (ARA) theory. The 
attraction/repulsion are put into the theory 'by hand' through the parameters ((U), the 
charges of both classes are defined to be 'positive' and the matrix g(,)"' with k # 1 
expresses the inequality of the attraction and repulsion. 

An experimental set-up to determine the deviation of k from unity would require a 
detailed knowledge of charges of both classes present in the source of the field required 
to examine the motion of charges. It should be noted that the use of a 'test charge' to 
define the source density would not do, as that involves the measurement of a 
Maxwell-free-charge density rather than the density of both classes. Moreover in a 
typical (Millikan experiment type) set-up, it is quite difficult to study a single isolated 
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charge, Instead we obtain ionised 'drops' containing a large (uncertain) number of 
particles, the lack of knowledge of which undermines a direct evaluation of k .  

Accepting the difficulties in the resolution of these problems, we shall now collect 
expressions in the (ARA) theory vis-i-vis classical electrodynamics and see how the 
motion of neutral bodies can be used to determine the upper limits to the deviation of k 
from unity. We first note that it is straightforward to define and interpret quantities E'"' 
and B'"' that reduce equation (2) to a form akin to the vintage form of the Maxwell 
theory. For example, the Biot-Savert law can be 'consistently derived' (see Jackson 
1975) to be of the form dB'"' = (dlOx/clxl3)go)'"'l", I"' being the current of the 
( p )  class of charges in the element dl. From equation (2) follows the equation of 
continuity for each class of charges: 

or v . J'"+ ap'"'/at = 0. (5) J'P'" 
,a = 0, 

In the Maxwell theory the continuity equation was satisfied by J[+]" -J'-'"; here it is 
satisfied by both J'+'" and J'-'" separately. Clearly, as such, the ARA theory is 
inadequate to describe a 'charge conservation' in the presence of processes such as the 
weak decays of neutral 'elementary' particles and consequently the U(l)  ARA theory 
needs to be extended to the gauge theories to include such processes. 

Further, we can define an electric dipole-moment density P'*'= x 'p ' " ) (x ' )  d3x' and 
follow up by defining a displacement field by 

as the ARA Maxwell equation for macroscopic media. Similarly, we can define magnetic 
moment density (magnetisation) as $(x 0 J" ( x ) )  and &"'E B'"'- c(p, 4 ~ g ( ~ ) ( " ) M " )  to 
yield the following form for the field equations: 

Using these in exactly the same way as the expressions in the Maxwell theory gives the 
following forms for the energies associated with the 'electric' and the 'magnetic' field 
and an associated 'Poynting vector' for a typical ARA system: 

The stress-energy tensor Tij, consistent with an expected form of momentum conser- 
vation law 
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can be seen to be of the form 

The complete stress tensor is given by 

The analysis finds an interesting application to electrodynamics of neutral bodies : we 
consider an idealised body which is uniformly (as opposed to overall) neutral, i.e. 
contains equal amounts of positive- and negative-charged-class particles in each of its 
parts. This is represented by J,(Oi) = J , (-*) f or the source-current density, which in turn 
implies A,’*) = Ai-*)  = (1 - k)A,  in the (Lorentz) gauge responsible for equation (4). 
If in addition we consider the source to be a dust distribution, then the total amount of 
charge of each class in every volume element of it is proportional to the total mass. In 
particular, we can see that if there are two basic (equally charged) particles (one in each 
class) then their charges are e(+) = e(-) = em,  where m is the total mass of a neutral dust 
configuration (e‘+’, e(-)) and equals the sum of the rest masses of each of the particles, 
and c is a constant determined by the charge to mass ratios of the two particles. Bearing 
all this in mind, the action in equation (1) reduces to 

where we have defined 2c ( l -  k)A,  = @,, G,, 5 QV+ -a,,, and GARA = 2c2( 1 - k). 
This represents an action of a vector gravitational field (Misner et a1 1973), the essential 
feature being that the associated vector ‘gravitational waves’ carry a positive energy in 
our case (being given by equations (7) and (8)), unlike the case discussed by Misner et a1 
(1973). We shall now see how the presence of such asymmetry introduces changes in, 
‘planetary orbits’ over and above the changes brought about by the general relativity 
theory. 

To this effect we can easily see, by following standard methods (quite like those used 
to derive the metric for a Reisner-Nordstrom black hole (see e.g. Jeffrey 1921)), that 
equating the stress tensor (equation ( l l ) ) ,  for the case we are considering, to 1 / 8 r G x  
the Einstein tensor gives the following metric solution for the most general spherically 
symmetric case: 

(13) 

with y = 1 - 2Gm/r + 2e2(1 - k ) ’ / ( l +  k)r2; using e = cm, the second term in y is seen to 
be proportional to (GARAm/r)’. Neglecting this term and using the equation of motion 

ds2 = y dt2 - y- l  dr2 - r2 de2  - r2 sin2 6’ d d 2  

we can see after some tedious but straightforward algebra (see Rindler 1977) that a 
typical orbit is represented by 

d2U/dq2 + U = m ( G  + GARa)/h2 + 3 Gmu i- GARA(GARA - 2G)M2U/h2, (15) 
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where u = l / r  and h is an integration constant with the dimensions of angular 
momentum. Identifying G + GARA as the observed gravitational constant, we can see 
that the last term introduces an additional change in the perihelion advance. The good 
agreement of the perihelion observation experiments (about 2% accuracy according to 
the precision of the early 1970's (Misner et a l  1973, p 1048)) forces us to limit G A R A  so 
it does not imply a perihelion advance of say more than the order of 1%. Therefore, 
using GARA<< G we find the solution of equation (15) to be given by 

where q5'= Jyq5 and uo(q5) is the solution with GARA = 0, i.e. the Einstein orbit. For 
y = 1 this gives a change of perihelion by an amount GARAGMZ/h2. Recalling the 
Einstein result 3m2G2/h2 we see that the result is fGARA/G xEinstein's result. An 
accuracy of 1% in observation indicates an upper limit GARA<0*03G which in turn 
asks for a very small asymmetry 11 - k 1 5 (where we have used G A R A  = 2C2( 1 - k )  
and C to approximate the charge to mass ratio of the proton). The asyIpmetry could 
however play a measurable role in cosmology. 

Finally, a field endowed with charges with asymmetric interaction can have interes- 
ting consequences. Consider a complex scalar field, for example, in which the invari- 
ance of the Lagrangian -m24*q5 -aPq5*a,q5 under the transformation q5 + q5 eic urges 
the existence of a conserved quantity s, = i(q5d,q5* - q5*aWq5). Although there is nothing 
compelling in the formulation so far (Sakurai 1973), we relate s, to an 'electromagnetic 
current' by j?) = e("'s,. Considering an interaction with an external ARA potential 
A,'"', a minimal replacement a, += a, -i(cy )e'"'A$"' in the Lagrangian gives the inter- 
action between the external potential and the (cy)  class of charge by the interaction 
Lagrangian: 

In the ARA theory Ai-") is in general not equal to Ai*'. Therefore the result that 'if q5 is 
a solution with an external potential A,  (=( 0, 0, OiA) say) then q5* is a solution with A. 
replaced by -Ao' does not hold. Thus if q5 is a field corresponding to a charge e'"' then 
q5* is not a field corresponding to a charge in the other class; it is just interpretable as a 
time-reversed state of the charge of the same class. 

We conclude that the number operators N(+' and N(-' occurring in a typical 
expression for the charge operator Q'*' = e'*' zk N l  - N i  both refer to the same class 
(cy)  of charges. In the Dirac theory of the electron the 'holes' in the redefined vacuum 
are not interpretable as charges of the 'positive' ARA class, but just the time reversals of 
the negative ARA class. It could well be that most of observed nature consists of charges 
of one class (electrons) and heavier time-reversed entities (protons) of charges of the 
same class. In that case, however, we cannot preclude the existence of the other 
charged state and its time-reversed entities. The limitation of k by the astronomical 
observations may then be erroneous and k could then be significantly different from 
unity. 

Acknowledgments 

I am grateful to Dr Gary Gibbons for encouragement. 



186 D Lohiya 

References 

Jackson J D 1975 in ClassicalElectrodynamics (New York: Wiley) p 578 
Jeffrey G B 1921 Proc. R.  Soc. A 99 123 
Misner C W, Thorne K S and Wheeler J A 1973 in Gravitation (New York: Freeman) p 179 
Rindler W 1977 Essential Relarivity (Berlin: Springer) p 143 
Sakurai J J 1973 Advanced Quantum Mechanics (New York: Addison-Wesley) p 11 


